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Abstract 

The multisolution method to solve powder structures 
ab initio from their X-ray diffraction data developed 
by Bricogne and Gilmore [Bricogne (1991). Acta 
Cryst. A47, 803-829; Gilmore, Henderson & Bricogne 
(1991). Acta Cryst. A47, 830-841] has been further 
tested by redetermination of the structure of the low- 
pressure phase of magnesium boron nitride, MgaBN3, 
on which a previous attempt using the maximum- 
entropy (ME) procedure devised by Gull, Livesey & 
Sivia [Acta Cryst. (1987), A43, 112-117] had failed. 
In the successful application of the ME method pres- 
ented here, the data were normalized using both over- 
lapped and nonoverlapped reflections in the program 
MITHRIL [Gilmore (1984). J. Appl. Cryst. 17, 42-46; 
Gilmore & Brown (1988). J. Appl. Cryst. 21,571-572]. 
After definition of the origin by the phase of a single 
reflection, seven reflections selected by a criterion of 
optimum second-neighbourhood enlargement were 
given permuted phases, thus generating 128 nodes of 
a phasing tree. Each node was subjected to con- 
strained entropy maximization followed by the 
evaluation of a log-likelihood gain incorporating both 
overlapped and nonoverlapped reflections. These 
log-likelihood gains were analysed with the Student 
t test in which single-, double- and triple-phase in- 
dications were tested. Eight nodes survived the tests 
at the 2% significance level to give a subset of pre- 
ferred nodes; the member of this subset with the 
highest log-likelihood gain gave a centroid map that 
revealed the positions of all the Mg, B and N atoms. 
Detailed examination of the phasing tree confirmed 
previous observations that the log-likelihood gain, 
not the entropy, is the most reliable criterion on which 
to base a multisolution phasing procedure. 
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O. Introduction 

The problems involved in the solution of crystal struc- 
tures ab initio from their X-ray or neutron powder 
diffraction data using conventional direct methods 
are well known: in powder diffraction, a three- 
dimensional data set is projected into one dimension 
where it is spherically averaged and, as a result, 
reflections that would otherwise be separately 
measured overlap; this degree of overlap increases 
with (sin 0)/A, thus, often reducing the effective resol- 
ution of the data to 1.3 ~ or less. This overlap can 
arise accidentally from the diffraction geometry or 
systematically as a consequence of point-group sym- 
metry. There have, of course, been many successes. 
[See, for example, McCusker (1988) and Hiraguchi, 
Hashizume, Fukunaga, Takenaka & Sakata (1991) 
and the references cited therein for a list of these.] 
However, no generally applicable technique to solve 
powder structures has yet emerged in spite of a recent 
surge of activity in this field (David, 1990; Cascanaro, 
Favia & Giacovazzo, 1992; Estermann & Gramlich, 
1992; Jansen, Peschar & Schenk, 1992). 

The maximum-entropy (ME) method as formu- 
lated by Bricogne (1984, 1988, 1991a, b, c)has already 
been successfully applied to powder structures (Gil- 
more, Henderson & Bricogne 1991b; Gilmore & 
Bricogne 1991), as well as to single-crystal data (Gil- 
more, Bricogne & Bannister, 1990), protein data sets 
(Gilmore, Henderson & Bricogne, 1991a) and elec- 
tron crystallography data (Dong, Baird, Fryer, Gil- 
more, MacNicol, Bricogne, Smith, O'Keefe & Hov- 
m611er, 1992; Gilmore, Shankland & Fryer, 1993) and 
we feel that these varied applications have provided 
strong practical support to the original theoretical 
arguments in favour of this technique as a rational 
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method of structure determination, especially in cases 
where the data are limited in resolution. We present 
here a retrospective investigation of the ab initio struc- 
ture determination of the low-pressure phase of 
magnesium boron nitride, Mg3BN3 (Hiraguchi, 
Hashizume, Fukunaga, Takenaka & Sakata, 1991). 
Originally, this structure was solved by means of 
heavy-atom methods. Standard direct methods were 
also successful but there are, however, several reasons 
to investigate the behaviour of our mode of structure 
solution on this problem. 

(i) The maximum-entropy method devised by 
Gull, Livesey & Sivia (1987) was tried on this data 
set and was unsuccessful in spite of the exceptional 
and almost single-crystal quality of the intensity data. 

(ii) Examination of the phasing tree demonstrates 
quite clearly that entropy alone is not a good indicator 
of correct phase sets under these circumstances. This 
is in direct contradiction with the claims made by 
Sjrlin, Prince, Svensson & Gilliland (1991) in their 
study of the protein recombinant bovine chymosin. 

(iii) A new method to analyse log-likelihood gains 
by means of node partitioning coupled with the 
Student t test is presented. This overcomes any notion 
of subjectivity when selecting nodes on a phasing tree 
by taking just those with the largest log-likelihood 
gains, which is the method we have used previously. 
The underlying theory of this method is discussed 
i n § l .  

(iv) The ease with which this structure was solved 
here, where a virtually noise-free map was produced 
that showed the positions of all the Mg, B and N 
atoms, makes a compelling case for our method. 

(v) We have devised and implemented an efficient 
computational strategy to exploit the inherent 
parallelism of the tree search on clusters of work- 
stations, which we expect to be of great value in 
subsequent applications of our method to powder 
structure determination or, indeed, in any parallel 
computation in crystallography. 

§ 1 describes the underlying theory and in par- 
ticular the application of statistical tests of sig- 
nificance to log-likelihood gains. § 2 outlines the crys- 
tal structure, the data preparation and the ME results. 
§ 3 discusses the results and, finally § 4 presents a 
summary with concluding remarks. 

1. Theory and methods 

The rationale of the theory underlying this work and 
its quantitative aspects have been described in many 
publications (see, for example, the references given 
in the Introduction). The multisolution strategy itself 
consists of exploration of the space of hypothetical 
phase sets in a hierarchical fashion by building a 
search tree; each phase set is ranked according to a 
statistical criterion, the log-likelihood gain (LLG), 
which acts as an heuristic function in the determina- 

tion of the subsequent growth of the tree. This 
criterion measures the extent to which the observed 
pattern of the unphased intensities has been rendered 
more likely by the phase choices made for a basis set 
of reflections (with a hypothesis H1, specified) than 
they were under the null hypothesis, H0 (which leads 
to Wilson's statistics). 

The LLG is defined as a sum of logarithms of 
probability ratios calculated for a sample of observed 
values of structure-factor amplitudes in the second 
neighbourhood of the basis set. As such, it is itself a 
random variable since different samples drawn from 
a population with a given theoretical distribution will, 
in general, yield different values of the LLG. This 
intrinsic randomness of the LLG results in the possi- 
bility that L(Ho) may be greater than L(H1) even if 
L(HI) is true, because of the random fluctuations in 
L(Ho) and L(H1). It is, therefore, of the utmost 
importance to compare the observed value of the LLG 
with the statistical distribution of its fluctuations so 
as to gauge the level of significance of any indication 
of preference for H1 over H0. This significance level 
is defined as the probability that the observed LLG 
be due to a statistical fluctuation in L(Ho) and not 
to the change of distribution associated with the 
alternative hypothesis, H1. 

From a practical point of view, this implies that 
any rejection of a hypothesis regarding trial phase 
values (i.e. any pruning of the tree) should only be 
carried out on the basis of a significance test found 
to be conclusive at a pre-set significance level. When 
working on a known structure, this discipline affords 
the only means to guarantee that no use is made of 
this prior knowledge; even then, it remains possible 
that such knowledge may exert an indirect or subcon- 
scious influence on certain strategic choices! 

In this work, we have not attempted to calculate 
the theoretical variance of the LLG and thus to ascer- 
tain absolute significance levels. Rather, we have 
adopted an empirical standpoint,  viewing the set of 
scores attached to the various phase assumptions as 
the results of a designed experiment (Cochran & Cox, 
1957) in which the signs chosen for the n coordinates 
of the U* vector assume the roles of treatments and 
the scores are considered as yields. The statistical 
analysis then consists of the detection of those combi- 
nations of treatments (if any) that have a significant 
effect on the yields. An effect associated with an 
individual sign choice is called the main effect of that 
sign; an effect associated with combined choices of 
more than one sign is said to result from an interaction 
of these signs. 

The simplest test consists of the detection of the 
main effect associated with a single sign. This is done 
by calculation of the average/x ÷ (/z-) and the vari- 
ance V ÷ (V-)  of the scores attached to the nodes 
where this sign is + ( - )  and a test to find whether 
the contrast ~ + - / z -  is significant by means of a 
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Student t test [see, for example, Press, Flannery, 
Teukolsky & Vetterling (1986)]. This test defines the 
significance level of this contrast as the probability 
that it could arise solely from the fluctuations 
measured by V ÷ and V- even if the two distributions 
of scores had the same theoretical mean/z. The same 
procedure allows one to test whether there are sig- 
nificant effects associated with the interactions of 
several signs, the averages and variances being com- 
puted for the two subsets of scores where the product 
of signs is + or - .  

If the set of permuted phases is the full grid of 2" 
sign choices, this procedure is none other than an 
n-fold tensor product of two-point Fourier trans- 
forms. For acentric reflections, this determines separ- 
ately the signs of the real and imaginary parts of the 
structure factors; this is equivalent to the computation 
of a four-point transform from samples taken at the 
points of a quadrant permutation. It is possible to 
develop this Fourier-analysis viewpoint further and 
a complete description is given by Bricogne (1993) 
together with a report of its implementation and use 
over the past two years in a computer program 
(BUSTER) for direct ab initio phasing of biological 
macromolecules. The simpler procedure described 
here, which was one sign per centric and two signs 
per acentric reflection, has the advantage of being 
simple to implement and has been found to work 
satisfactorily on several test structures beside the one 
reported here. It also generalizes in a natural fashion 
to powder diffraction when the method of hyper- 
octant permutation (Bricogne, 1991a) has been used. 

2. Data preparation and structure solution 

The low-pressure phase of magnesium boron nitride, 
Mg3BN3, crystallizes in the hexagonal space group 
P63/mmc with a = 3.54453 (4), c = 16.0353 (3) A 
and Z = 2  (Hiraguchi, Hashizume, Fukunaga, 
Takenaka & Sakata, 1991). The intensity data were 
collected on a good laboratory instrument. 

The data were first normalized using MITHRIL91 
(Gilmore, 1984; Gilmore & Brown, 1988) to give 
unitary structure factors I uhl °b~. The normalization 
included the overlapped reflections. The data were 
partitioned into two disjoint sets {N} and {O}, which 
are the nonoverlapped and overlapped data, respec- 
tively. The variances, tY2([ Uh I°bs), were also computed. 
There was a total of 69 reflections in the data set, 
including two overlap sets, each comprising two 
reflections, so the overlaps play a minor role in this 
structure determination. The 2 0 range of the data was 
0-120 °, giving an effective resolution of 0.9/~,, which 
is very good for a powder data set. A temperature 
factor of 0.8/~2 was suggested by the Wilson plot and 
used in the normalization. One feature is of import- 
ance here, however. The unit cell of Mg3BN3 com- 
prises six Mg, six N and two B atoms. This number 

of atoms is small and, in consequence, the values of 
I Uh[ °bS were very large with a maximum value of 0.78. 
The exponential modelling algorithm that we use can 
accommodate such large magnitudes and remain 
stable but problems are encountered with phase- 
permutation methods as some phase combinations 
may give rise to negative Toeplitz determinants. The 
associated nodes will then not permit an adequate fit 
between [ Uh lobs and [ u~EI in the sense of making the 
X 2 statistic equal to 1.0 (Bricogne & Gilmore, 1990). 
To overcome this problem, the unit-cell contents were 
multiplied by five, which gave a maximum U magni- 
tude of 0.35. There were no problems with the X 2 
statistic for any node under these circumstances. We 
will in due course introduce checks for negative deter- 
minants prior to node evaluation to avoid the need 
for such ad hoc readjustments but we have checked 
that the use of a phased likelihood function 
(Bricogne, 1993) and the use of U magnitudes with 
the correct cell contents, which takes into account 
the impossibility of reaching X 2= 1.0 for certain con- 
straints, leads to essentially the same result as those 
described below. 

The remaining calculations were carried out 
using the MICE maximum-entropy program 
(Gilmore, Bricogne & Bannister, 1990). The origin 
was defined by reflection 107, I uZbsl=0.153, d = 
1.8 A, which belonged to set {N} and satisfied the 
usual rules and criteria appropriate for the space 
group. (A new version of the ME program now per- 
mits the use of set {O} here if necessary.) It was 
selected as the reflection with the greatest ability to 
allow optimal enlargement of the second neighbour- 
hood of the basis set when extra reflections are added 
later. This single reflection defined the basis set {H}; 
the remaining non-basis-set reflections were assigned 
to set {K}. This generated the root node (node 1). 

With the concept of optimal second-neighbour- 
hood enlargement again invoked, seven reflections 
were added to the basis set and given permuted phases 
(0 or 7r since the space group is centrosymmetric). 
This generated 128 new nodes numbered 2 to 129. 
Entropy maximization was carried out on each node 
using exponential modelling; a line search was 
employed for two cycles then the slower plane-search 
algorithm was used with bicubic modelling of both 
the entropy and the constraint functions to hold X 2 
at 1.0 (Bricogne & Gilmore, 1990, § 2.3). For each 
node, the log-likelihood gain was calculated with use 
of the likelihood expression described for single- 
crystal data by Bricogne (1984) and later by Bricogne 
& Gilmore (1990) and generalized by Bricogne 
(1991 a) to include overlapped reflections. Likelihood 
considerations also permit the refinement of the 2 
parameter, which is related to the effective number, 
Neff, of atoms in the unit cell by Neff = 1/2. Its value 
reflects both the quality and the resolution of the data. 
Neff tends to increase as the data resolution increases 
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T a b l e  1. T h e  phasing tree for M g 3 B N s  

To 
Node node 

1 0 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 1 
24 1 
25 1 
26 1 
27 1 
28 1 
29 1 
30 1 
31 1 
32 1 , 
33 1 
34 1 
35 1 
36 1 
37 1 
38 1 
39 1 
40 1 
41 1 
42 1 
43 1 
44 1 
45 1 
46 1 
47 1 
48 1 
49 1 
50 1 
51 1 
52 1 
53 1 
54 1 
55 1 
56 1 
57 1 
58 1 
59 1 
60 1 
61 1 
62 1 
63 1 
64 1 
65 1 

LLG LLG To LLG LLG 
Entropy (Nooverlaps) (Overlaps) ~ Node node Entropy (Nooverlaps) (Overlaps) 

-0.5 0.01 0.00 0.01429 66 1 -0.94 2.95 3.11 
-0.88 2.75 2.81 0.00705 67 1 -0.65 7.38 7.68 
-0.75 7.58 7.89 0.00298 68 1 -1.02 1.10 1.16 
-0.89 1.50 1.56 0.00758 69 1 -0.95 0.47 0.48 
-0.67 1.72 1.72 0.00722 70 1 -0.89 1.91 2.03 
-0.93 0.65 0.66 0.00855 71 1 -0.70 3.11 3.15 
-0.86 1.54 1.57 0.00746 72 1 -0.82 1.50 1.53 
-0.83 0.78 0.84 0.00820 73 1 -1.08 6.09 6.28 
-0.66 4.39 4.53 0.00509 74 1 -0.83 0.76 0.83 
-0.83 1.59 1.64 0.00773 75 1 -0.79 7.57 7.84 
-1.32 9.11 9.40 0.00340 76 1 -0.70 2.64 2.77 
-0.83 2.55 2.66 0.00685 77 1 -1.10 1.30 1.32 
-0.82 2.82 2.80 0.00660 78 1 -0.84 0.96 1.01 
-0.69 1.12 1.17 0.00823 79 1 -0.89 3.90 3.90 
-1.07 3.31 3.41 0.00591 80 1 -0.82 1.03 1.08 
-0.79 -0.38 -0.39 0.00869 81 1 -1.22 6.27 6.49 
-1.23 7.19 7.37 0.00398 82 1 -0.80 -0.46 -0.49 
-0.76 -0.42 -0.49 0.00982 83 1 -0.73 2.98 3.13 
-1.08 3.60 3.82 0.00456 84 1 -0.83 -0.64 -0.70 
-0.81 -0.52 -0.55 0.00965 85 1 -1.03 3.36 3.50 
-0.82 2.85 2.93 0.00643 86 1 -0.77 -0.20 -0.18 
-0.81 -0.10 -0.16 0.00921 87 1 -0.86 4.36 4.51 
-1.07 4.70 4.84 0.00520 88 1 -0.72 -0.31 -0.33 
-0.74 -0.31 -0.33 0.00937 89 1 -1.00 1.40 1.46 
-0.71 1.69 1.72 0.00704 90 1 -0.88 -0.67 -0.70 
-0.88 -0.60 -0.66 0.00983 91 1 -0.90 2.29 2.38 
-1.12 3.80 4.02 0.00528 92 1 -0.72 -0.25 -0.28 
-0.89 -0.27 -0.26 0.00915 93 1 -0.94 2.44 2.57 
-0.82 2.45 2.55 0.00616 94 1 -0.88 0.28 0.33 
-0.75 0.18 0.18 0.00909 95 1 -0.85 4.80 5.07 
-0.99 5.45 5.74 0.00399 96 1 -0.84 -0.77 -0.79 
-0.81 -0.91 -0.96 0.00970 97 1 -1.01 1.94 2.07 
-0.89 1.84 1.87 0.00737 98 1 -0.94 0.25 0.21 
-0.95 0.72 0.69 0.00814 99 1 -0.78 5.19 5.49 
-1.05 5.36 5.67 0.00328 100 1 -1.12 -0.75 -0.78 
-0.89 -0.41 -0.54 0.00953 101 1 -1.09 2.20 2.36 
-0.84 3.03 3.13 0.00603 102 1 -0.89 -0.19 -0.27 
-1.03 -0.30 -0.37 0.00901 103 1 -0.89 4.89 5.03 
-1.09 4.03 4.18 0.00566 104 1 -0.85 0.00 -0.02 
-0.84 -0.64 -0.73 0.00956 105 1 -1.05 1.92 2.06 
-0.75 2.81 2.95 0.00572 106 1 -0.84 -1.01 -1.11 
-0.79 -0.43 -0.51 0.00937 107 1 -1.07 3.66 3.87 
-1.11 5.05 5.24 0.00461 108 1 -0.68 -0.39 -0.41 
-0.80 -0.57 -0.66 0.00933 109 1 -0.94 1.57 1.65 
-0.76 1.62 1.65 0.00750 110 1 -0.78 -0.84 -0.95 
-0.69 -0.52 -0.57 0.00973 111 1 -0.79 2.74 2.90 
-1.01 3.91 4.13 0.00514 112 1 -0.75 -0.75 -0.81 
-0.78 -1.31 -1.44 0.00994 113 1 -1.00 2.24 2.34 
-0.93 2.00 2.08 0.00721 114 1 -0.84 1.15 1.24 
-0.80 1.63 1.76 0.00737 115 1 -0.68 2.24 2.41 
-0.87 3.15 3.38 0.00596 116 1 -0.90 1.19 1.31 
-0.82 1.18 1.30 0.00741 117 1 -0.97 6.67 6.9g 
-0.92 6.00 6.28 0.00481 118 1 -0.79 0.43 0.55 
-0.89 1.02 1.09 0.00717 119 1 -0.91 7.05 7.37 
-1.19 9.79 10.15 0.00257 120 1 -0.73 1.50 1.65 
-0.78 1.95 2.06 0.00664 121 1 -0.79 0.98 1.11 
-0.68 1.30 1.38 0.00794 122 1 -0.81 0.36 0.43 
-0.78 1.06 1.14 0.00800 123 1 -0.68 1.31 1.39 
-0.75 2.06 2.19 0.00718 124 1 -0.69 1.09 1.17 
-0.77 1.32 1.44 0.00736 125 1 -0.77 4.20 4.40 
-0.68 3.38 3.58 0.00620 126 1 -0.74 0.98 1.10 
-0.72 2.18 2.30 0.00712 127 1 -0.67 5.26 5.55 
-0.78 7.90 8.22 0.00337 128 1 -0.73 0.55 0.66 
-0.77 0.26 0.32 0.00776 129 1 -0.70 1.03 1.14 
-0.67 0.82 0.88 0.00829 

0.00641 
0.00301 
0.00767 
0.00769 
0.00744 
0.00613 
0.00800 
0.00396 
0.00797 
0.00363 
0.00686 
0.00752 
0.00833 
0.00516 
0.00817 
0.00492 
0.00975 
0.00499 
0.00971 
0.00614 
0.00934 
0.00512 
0.00947 
0.00713 
0.00970 
0.00656 
0.00944 
0.00665 
0.00879 
0.00410 
0.00983 
0.00725 
0.00851 
0.00325 
0.00897 
0.00650 
0.00942 
0.00481 
0.00893 
0.00633 
0.00974 
0.00520 
0.00939 
0.00762 
0.00994 
0.00586 
0.00971 
0.00720 
0.00725 
0.00657 
0.00734 
0.00427 
0.00759 
0.00399 
0.00718 
0.00762 
0.00795 
0.00796 
0.00800 
0.00563 
0.00743 
0.00472 
0.00797 
0.00782 
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and as the size of the basis set increases and with it 
the strength of the extrapolation. The behaviour of 
this parameter for this structure is discussed in § 3. 
Table 1 summarizes the results of this calculation. An 
analysis that used the Student t test on single-, double- 
and triple-phase indications at the 2% significance 
level reduced the tree to eight nodes numbered 3, 11, 
55, 63, 67, 75, 119, 127. Of these, node 55 had the 
largest likelihood. Table 2 summarizes this analysis. 

At this point, all U magnitudes had large extrapo- 
lated values and the phasing procedure was con- 
sidered complete. To extract the atomic coordinates, 
qME(x) (which is not a map in the traditional sense 
but a probability distribution of random atomic posi- 
tions) is used to generate a centroid map (Bricogne 
& Gilmore, 1990, § 1.6). For this calculation, reflec- 

• tions belonging to both set H and set K are used and 

Table 2. The results of  the t test for the permutation 
of  seven reflections 

s ( n )  refers to the sign of  reflection number n. The reflections 
involved are: (5) 1,0,12 I Uhl °bs = 0.223; (6) 314 I Uhl °bs = 0.210; (7) 
2,0,12 IUhl°bs=0.209; (8) 317 IUhl°b~=0.196; (9) 311 IUhl °b~= 
0.189. Reflections (18) 3i6 IUhl°b~=0.138 and (31) 3i5 IUhl°b~= 
0.089 were also given permuted phases but there were no indica- 
tions involving them with a significance level of less than 2% 

Effect Sign indication Significance level 
S ( 8 )  + < 1 0  - 4  

s(9) - 1.5 X 10  - 2  

s(5)s(7) + 6.6 x 10 -4 
s(9)s(6)s(5) - 4.3 x 10 -4 

assigned weighted Fourier coefficients; overlapped 
reflections are also included. Gilmore, Henderson & 
Bricogne (1991b) have shown how the use of this 

1.0 

0.8_ 

X 0.6 
0.4 

0.2 
0.0 

I x "" I / \  I / \  

0.0 0.2 0.4 

(a) 

/ "  / \  I 

0.6 0.8 1.0 

1.0 

0.8_ 

X 0.6 
0.4 

0.2 

0.0 / 

0.0 0.2 0.4 0.6 0.8 1.0 

(b)  

1.0 x°°I  
0.4 ×~)~ 

5 
0.0 0.2 0.4 0.6 0.8 1.0 

Z 
(c) 

Fig. 1. centroid maps in projection down the b axis for Mg3BN3. The atoms labelled 1 and 2 are Mg; 3 and 4 are N; 5 is the B atom. 
(a) The map for the preferred node, 55. (b) The map for node 17, which has a high likelihood but was rejected by the Student t 
test. (c) The map for node 9, which has the maximum entropy. 
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formula produces maps that are significantly cleaner 
than those from which the overlaps are omitted. The 
M I C E  program allows the computation of both over- 
lapped and non-overlapped maps, with the former as 
the default. 

The centroid map for node 55 is shown in Fig. l ( a )  
in projection down a. It is a remarkably clean map, 
showing all the atomic positions including that of B. 
The only noise is a slight tail around Mg(2), which 
can easily be rejected as spurious on chemical 
grounds. 

It is worth emphasizing that these maps are not 
strictly comparable with those of Hiraguchi et al. 
(1991), whose work was directed primarily towards 
accurate electron density studies where the 
maximum-entropy maps were computed for the 
specific purpose of suppression of series-termination 
artefacts. Our own study has been limited to investiga- 
tion of the phase-determination process and the quan- 
titative evaluation of our maximum-entropy maps will 
be studied separately. 

3. Discussion 

3.1. Comments  on the phasing tree and the role 
o f  the t test 

The ME method worked here automatically, reveal- 
ing a complete structure. The t test is very effective 
as a method to extract information in a rational way 
from a set of log-likelihood gains. In the present case, 
selection of only the node with the highest likelihood 
would be successful but in many other situations, 
especially where the tree was being further expanded 
with new nodes, we have found the use of the t test 
to be essential. Its invocation removes any degree of 
subjectivity from the decision process as well as mak- 
ing the phasing procedure automatic. 

Visual inspection of the maps for the other seven 
nodes selected by the t test shows that none of them 
quite matches the quality of that from node 55 but 
that they all contain considerable elements of correct- 
ness and probably sufficient information to enable 
the combination of Rietveld refinement and Fourier 
synthesis to complete the structure. On the other 
hand, solutions with relatively high likelihood that 
are rejected by the t test are uniformly poor. Fig. l (b)  
shows a typical example. This is for node 17, which 
has a log-likelihood gain of 7.4, marginally higher 
than that for some of the nodes that have been kept 
by the t test. The map is of very poor quality, with 
very little contrast; the largest peaks are incorrectly 
placed and the structure is essentially unsolved at this 
stage. This illustrates the main point of § 1, viz the 
LLG is an intrinsically random quantity to which a 
statistical analysis must be applied if reliable phase 
indications are to result. 

The role of the overlaps also deserves a mention, 
in spite of the fact that the MgaBN 3 data used here 
were of almost single-crystal quality. We have found 
that, with typical powder diffraction data sets, their 
inclusion is essential, both as contributors to the LLG 
(to increase sensitivity) and as Fourier terms in the 
final centroid map (to minimize distortions caused 
by the absence of terms for reflections involved in 
the overlaps). Examples of powder structure determi- 
nations where this importance is demonstrated are 
given by Gilmore, Henderson & Bricogne (1991b), 
Tremayne, Lightfoot, Mehta, Bruce, Harris, Shank- 
land, Gilmore & Bricogne (1992) and Lightfoot, 
Tremayne, Harris & Bruce (1992). 

The behaviour of the ,~ parameter is also interest- 
ing. For most of the nodes it refines to a value of ca 
0.009-0.006 but for the correct node it falls dramati- 
cally to 0.00257. This behaviour is to be expected: 
when a great deal of correct phase information has 
accumulated, the ME extrapolation becomes highly 
exact as the Toeplitz determinants approach zero 
(Goedkoop, 1950). In these circumstances, 2 refines 
to a much smaller value than 1/N. We have repeatedly 
observed the combined increase in LLG coupled with 
a fall in Z to be an indication of the correct node. It 
would, however, be unwise to use 2 alone as an 
indicator of correctness since it depends so critically 
on data resolution. 

3.2. Is entropy a suitable indicator o f  phase 
correctness ? 

The question arises of the suitability of entropy as 
an indicator of phase correctness. SjSlin, Prince, 
Svensson & Gilliland (1991), for example, claimed 
to have obtained phases ab initio for the structure of 
recombinant bovine chymosin [previously solved by 
Gilliland, Windborne, Nachman & Wlodawer (1990) 
via conventional heavy-atom substitution methods] 
using a combination of phase permutation by means 
of a fractional factorial design with entropy as the 
sole indicator of phase correctness. This claim is 
controversial. Lemar6chal & Navaza (1991) have 
raised objections to the use of entropy in this way 
and it is in conflict with the results published by 
Gilmore, Bricogne & Bannister (1990) and Gilmore, 
Henderson & Bricogne (1991a). The entropy values 
for the nodes of Mg3BN 3 range from -0.66 (node 9) 
to -1.19 (node 55). The correct solution has the 
minimum entropy here and we have found that t tests 
based on entropy instead of likelihood produce maps 
that are uninterpretable. A typical example is shown 
in Fig. l(c)  for node 9, which has the maximum 
entropy. The map has one large peak in the asym- 
metric unit, which is incorrectly placed; indeed, none 
of the atoms are correctly indicated. It is our 
experience that this behaviour is quite typical and 
that, regardless of resolution, entropy alone cannot 
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be considered a viable indicator of phase correctness 
nor used as a selector of preferred maps. There is no 
theoretical reason why powder data sets should 
behave differently in this respect than those of 
proteins. 

3.3. Large phasing trees - a note of  caution 

Given adequate computing resources, it is tempting 
to generate as many equivalent nodes as possible, 
particularly during overnight computing jobs. Under 
these circumstances, the significance level for the t 
test, normally set at 2%, must be greatly reduced. As 
a typical example for Mg3BN3, after origin definition, 
we permuted the phases of ten reflections to generate 
1024 nodes. An analysis of significance at the 2% level 
rejected all but one of these, leaving a node with a 
log-likelihood gain of 4.319. The corresponding cen- 
troid map was very poor with less than 50% of the 
structure present. The analysis rejected the solution 
with the highest likelihood (12.95), which had an 
associated centroid map that showed the complete 
structure. The significance level needed to be reduced 
to 0.001% for the correct node to be included. In our 
experience, the significance level should be set in such 
a way as to keep at least eight nodes for further 
investigation. When this is done in the 1024 node 
calculation, the best nodes are indeed retained. 
However, in the interest of efficiency, it is recommen- 
ded that no more than ca 128 equivalent nodes be 
generated and analysed at any step in the phasing 
procedure. The need for such an empirical rule is in 
keeping with the remark made in § 1 that we are 
determining relative (rather than absolute) levels of 
significance. 

3.4. The failure of  the Gull-Livesey-Sivia algorithm 

The approach to the phase problem using ME 
methods outlined by Gull, Livesey & Sivia (1987) 
does not work here. This is not unexpected. The 
technique used in their approach is to define an origin 
(and enantiomorph if required) and use these phased 
reflections as constraints in an entropy-maximization 
procedure. One then examines the extrapolated struc- 
ture factors and incorporates those with the largest 
magnitudes into the basis set using observed structure 
factors and the extrapolated phase. However, such a 
procedure traps the entropy maximization in a local 
optimum from which It becomes impossible to move 
and potentially incorrect phases are picked up (Gil- 
more, Bricogne & Bannister, 1990)- all the features 
of the origin-defining map become exaggerated. The 
process to collect strong extrapolates also adds noth- 
ing new to the calculation since the ME procedure 
can already predict them. It is the incorporation of 
those reflections of maximum surprise, i.e. I u ~ l - -  0.0 
while [Uhl °bs is large, that optimally enlarges the 

second neighbourhood of the basis set. This mode of 
operation is critical if maps are to develop new 
features as well as to correct wrong ones. It follows 
in a very natural fashion from the principle of phase 
sets being ranked according to likelihood. 

All this can be seen quite clearly in the attempt to 
use the Gull-Livesey-Sivia method. The ME map 
based on a single origin-defining reflection gave three 
strong extrapolates, which were added to the basis 
set; two of these had incorrect phases. The next cycle 
produced one new extrapolate, which had an incor- 
rect phase, and in the next cycle five out of the six 
strong extrapolates were wrongly phased. This pro- 
cess continued for five cycles, producing a final map 
that showed only a single large peak that correspon- 
ded to the position of an N atom. 

3.5. Computing aspects 

The phasing procedure described here uses more 
computer time than traditional direct methods. 
However, given the power of the new generation of  
workstations, this is not a significant problem for 
small structures. In addition, such computers are 
often networked using fast Ethernet connections, 
which often involve local subnets. Furthermore, there 
is a high degree of parallelism inherent in the calcula- 
tions that involve phasing trees. Each node at a given 
level of phase permutation is an independent entity 
until the final statistical analysis is carried out, when 
all such nodes need to be collated. It is possible to 
exploit both the inherent parallelism of the ME com- 
putations and the networking facility simultaneously 
if the file containing the equivalent nodes is split into 
a set of individual files each containing a single node. 
These files and the M I C E  program are centrally 
mounted on a server (using, for example, the Network 
File System, NFS, on Unix-based computers or DEC- 
net on DEC machines). A central program on the 
server farms out nodes to the workstations on the 
network, records the completion of the ME calcula- 
tions on these nodes and sends further nodes as 
required. When all the calculations are complete, the 
results are collated into a single file. The granularity 
of such a procedure means that a network of n work- 
stations of equivalent power will run the ME calcula- 
tions n times faster than a single machine. The method 
works best on homogenous computer clusters but can 
be developed for heterogeneous networks as well, 
although a different version of the ME program is 
needed for each different computer architecture. We 
have developed such an arrangement on a local 
laboratory network of five SUN workstations 
(Sparcstation 2 or near equivalents) at Glasgow. With 
this system, the 129 nodes for Mg3BN 3 were calcu- 
lated in just over 34 min with a proportional increase 
to ca 4~ h for the 1024 nodes. Although not as fast 
as traditional direct methods, ME methods can be 
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competitive for powder structures, given the quality 
of the final solution. 

4. Summary and concluding remarks 

We have demonstrated the applicability of the use of 
combined entropy maximization and likelihood rank- 
ing to the determination of the crystal structure of 
Mg2BN3 from its X-ray powder diffraction data col- 
lected on a laboratory instrument. This procedure 
easily produced a map showing the positions of all 
the atoms in the asymmetric unit, including N and 
B. The only difficulties experienced concerned the 
small number of atoms in the unit cell, which gave 
rise to very large U magnitudes that, although tract- 
able, required some precautions; this inessential com- 
plication shows, if anything, that the method has 
phasing power to spare. In addition, the application 
of the Student t test to analyse the log-likelihood 
gains automates the procedure and removes any 
inherent subjectivity present in the selection of nodes 
on the criterion of likelihood alone. Care is, however, 
needed with the significance levels when very large 
trees are generated. This technique has been applied 
here to a centrosymmetric structure but it can be 
readily extended to acentric reflections using quad- 
rant phase permutation and analysis for the signs of 
both the real and the imaginary parts of the permuted 
structure factors. Indeed, the structure of formylurea, 
which crystallizes in space group Pn21a, has been 
solved in a routine way from its X-ray powder diffrac- 
tion data with this method. Entropy alone again 
turned out to be a very poor indicator of phase 
correctness. 

A further development is now under way to allow 
the incorporation of overlapped reflections into the 
basis set when required and to analyse phase permuta- 
tions of these reflections in the same way using the 
formalism developed by Bricogne (1991a, § 6.3). Such 
a procedure has been developed as a program and is 
currently under test. Since the number of permuted 
hyperphase values can be much greater than that of 
ordinary phases, the parallelization of node evalu- 
ations described in § 3.5 will be of particular value 
to powder structure evaluation. 

Other points arise concerning data quality, com- 
pleteness and the use of reflection multiplicities when 
the intensity data are processed. To solve powder 
structures ab initio, the mode of processing and the 
data quality are of paramount  importance. Weak 
reflections must be accurately measured and included 
with measured intensity even if considered unob- 
served. Furthermore, it is important that reflection 
multiplicities are correctly handled. M I T H R I L  and 
M I C E  both expect the intensity data from powders 
to be without multiplicity corrections; other packages 
will have different criteria. A common fault is to 

correct nonoverlapped reflections for multiplicity 
effects, but not to correct the overlaps. In M I C E ,  the 
sophisticated statistical analysis that underlies the 
likelihood criterion is very vulnerable to such system- 
atic inconsistencies in the data. 
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Abstract 

The most widespread application of the rotation func- 
tion is the determination of the relative orientation 
of a given search fragment in the unit cell of an 
unknown crystal structure [Rossmann & Blow (1962). 
Acta Cryst. 15, 24-31]. Here a modification is presen- 
ted of the rotation function for this specific applica- 
tion, which exploits the information of the intensity 
data more effectively, thus leading to a higher signal 
size with the same computing cost. 

1. Introduction 

Although the primary phasing of intensity data 
from small equal-atom structures and from 
macromolecular compounds is normally carried out 
using either direct methods or the multiple isomor- 
phous-replacement technique, molecular-replace- 
ment techniques are increasingly used when a suitable 
search fragment (or model) is available. Besides the 
crystal symmetry, the principal factors determining 
the success of molecular-replacement methods are, 
on the one hand, the ~ize, the form and the accuracy 
of the search fragment and, on the other hand, the 
number and reciprocal-space distribution of the 
measured intensities. In general, the larger and more 
accurately known the fragment is, the less drastic are 
the requirements imposed on the intensity data. 

As is well known, the real-space formulation of the 
rotation function of Rossmann & Blow (1962) for the 
case where a suitable search model is available is 

R(~)oc ~ Po(u)Pmode,(~u)du. (1) 
u 

The integral in (1) measures the agreement of the 
Patterson function of the unknown crystal structure 
(Po) with the rotated Patterson function of the iso- 
lated search model (Pmodel) in a region U around the 
origin of the unit cell. The symbol ~ denotes a rota- 
tion operator that rotates the coordinate system of 
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the search model with respect to that of the unknown 
crystal structure. R(/2) will have a large maximum 
when the two Patterson functions are brought into 
maximum coincidence. If U corresponds to the whole 
unit cell, (1) can be expressed in reciprocal space as 
the summation 

X IFo(H)I21Sff , a)l (2) 
H 

where [Fo(H)[ 2 and ]S(H)] 2 are, respectively, the 
Fourier coefficients of the observed and the model 
Patterson functions (Tollin & Cochran, 1964). IS(H)[ 2 
can be written in the form 

IS(H) 2= ~ ~ ZjZk COS (2~rn. rig) (3) 
j=l k=l 

with n being the number of atoms of the fragment, 
Zj being the atomic number of the jth atom and rjk 
denoting the difference vector r j - rk ,  where rj is the 
position vector of the jth atom referred to a fixed 
local origin. 

Inspection of (2) reveals that the contribution to 
the H summation of those terms with small [Fo(H)[ 2 
values is not significant. Consequently, it seems rea- 
sonable to expect an increased signal size if the rota- 
tion function (2) is modified to include additionally 
the significant contribution of the weak reflections. 
In practice, this modification can be useful in those 
cases where only a small intensity data set is available, 
as is typical for low-resolution X-ray powder diffrac- 
tion data of organic compounds (Rius & Miravitlles, 
1988; Wilson & Wadsworth, 1990; Rius, Miravitlles, 
Molins, Crespo & Veciana, 1990; Amig6, Ochando, 
Abarca, Ballesteros & Rius, 1992). Owing to the 
reduced number of available intensities, the most 
difficult step is the rotation search. The subsequent 
fragment positioning is greatly simplified with the 
combined use of translation and packing functions 
(Harada, Lifchitz, Berthou & Jolles, 1981; Stubbs & 
Huber, 1991) as well as with the calculation of the R 
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